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( Notations have 

[ A manifold always means a differentiable manifold of class c

Answer Question 

1. Answer any five questions :

 a) Define chart on a manifold.

 b) Using [ X, X ] = 

 c) Find )( f  where 

  (),(
121

xxxf 

 d) When is a vector field on a manifold said to be complete ?

 e) Test whether 

  xxxy
2

1
d 




 f) Show that on a Lie group 

  aLLLL
abba
, 

 g) Define linear connection on a manifold in the 

2. a) Define Atlas on a manifold.

 b) Prove that a circle in the 

manifold. 
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Notations have their usual meanings ) 

[ A manifold always means a differentiable manifold of class c


] 

Question No. 1 and any four from the rest : 

questions : 2 

Define chart on a manifold.   

] = , show that [ X, Y ] = – [ Y, X ]. 

where :f     is given by 

),
2

2
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2
1

xexxe
xx  . 

When is a vector field on a manifold said to be complete ? 

 is closed or not, where 

yyx d
2



 . 

Show that on a Lie group G 

ba, in G, when 
a

L is the left-translation on 

Define linear connection on a manifold in the sense of Koszul.

Define Atlas on a manifold. 

Prove that a circle in the xy plane of  is an 1-dimensional 
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 5 = 10 

  

translation on G. 

of Koszul. 

dimensional 

3 + 7 
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3. a) Show that, for every smooth vector field 

XfYfX ,[],[ 

 b) Find the integral curve of a null vector field on 

4. a) Define f-related vector field

f-related vector fields on manifolds 

that ],[
21

XX  and 

 b) Show that a set of 1

.....
21



5. a) If 
21

, are left inv

that 
21

 is also so.

 b) State and prove Maurer

6. a) Define Torsion tensor field on a manifold and show that it is 

skew-symmetric.

 b) Define curvature tensor field 

  fzYXfR ),( 

are all smooth vector fields on 

7. a) Define Riemannian Manifold.

 b) Let  be a metri

and  be another linear connection given by

   + ( XT

  where T is the torsion tensor of 

conditions are equivalent

  (i)    (ii)   g
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Show that, for every smooth vector field X, Y on a manifold 

YfXY )(] ,  f  being smooth function on 

Find the integral curve of a null vector field on M. 

related vector fields on a manifold. If 1(, iYX
ii

related vector fields on manifolds M and N respectively, show 

and ],[
21

YY  are also f-related. 

Show that a set of 1-forms }...,,,{
21 k

 is linearly dependent if

0
k

. ( 2 + 4 ) + 4

are left invariant differential forms on a Lie group, show 

is also so. 

State and prove Maurer-Cartan Equation. 3 + ( 2 + 5 )

Define Torsion tensor field on a manifold and show that it is 

symmetric. 

Define curvature tensor field R on a manifold M. Show that 

ZYXRf ),( , f being 


c function on M and 

are all smooth vector fields on M. 3 + ( 2 + 5 )

Define Riemannian Manifold. 

tric connection on a Riemannian Manifold ( M,g

be another linear connection given by 

), YX  

is the torsion tensor of M. Show that the following 

conditions are equivalent 

  0),(,(),,((  ZXTYgZYXTg  

  

 

on a manifold M, 

being smooth function on M. 

6 + 4 

)2,1  are            

respectively, show 

is linearly dependent if 

( 2 + 4 ) + 4 

ie group, show 

3 + ( 2 + 5 ) 

Define Torsion tensor field on a manifold and show that it is 

. Show that  

and X, Y, Z 

3 + ( 2 + 5 ) 

2 

connection on a Riemannian Manifold ( M,g ) 

. Show that the following 

4 + 4  


